

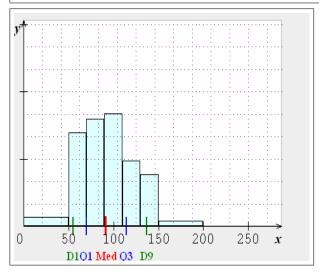
CORRIGE PARTIEL BLANC

L2AES-Statistique Janvier 2012

1 EXERCICE 1

1. On note a_i et b_i les bornes inférieures et supérieures des classes et on calcule les amplitudes de classes : $b_i - a_i$. On représente ce caractère continu par un histogramme ; les classes étant d'amplitudes inégales, on doit corriger les effectifs en utilisant la densité $d_i = \frac{n_i}{b_i - a_i}$. On a pris pour effectifs corrigés : $n_i cor = 20d_i$, c'est-à dire le produit de la densité par l'amplitude minimale.

a _i	b i	n _i	Xi	fi	f _{icc}	Ai	di	n _i cor
0	50	10	25	0,05	0,05	50	0,20	4
50	70	40	60	0,2	0,25	20	2,00	40
70	90	46	80	0,23	0,48	20	2,30	46
90	110	48	100	0,24	0,72	20	2,40	48
110	130	28	120	0,14	0,86	20	1,40	28
130	150	22	140	0,11	0,97	20	1,10	22
150	200	6	175	0,03	1	50	0,12	2,4
		200		1				



- 2. La classe modale est celle qui a la plus grande densité, soit la classe [90; 110]; c'est le rectangle le plus haut de l'histogramme. Le mode est calculé en considérant les classes encadrant la classe modale, ce qui donne avec les notations du cours: $\begin{cases} x_1 = 90 \\ x_2 = 110 \end{cases}, \begin{cases} h = 48 \\ h_1 = 46 \text{ et } h_2 = 28 \end{cases} \begin{cases} k_1 = h h_1 = 2 \\ k_2 = h h_2 = 20 \end{cases} \text{ et pour conclure}: \\ M_o = \frac{k_2 x_1 + k_1 x_2}{k_2 + k_1} = \frac{20 * 90 + 2 * 110}{22} \simeq \boxed{91.82} \text{ ; comme prévu, le mode est largement attiré à gauche.}$
- 3. La calculatrice donne : $\overline{x} = 93.1$, $\sigma(x) \simeq 32.35$ et $V(x) = \sigma^2(x) \simeq 32.35^2 \simeq 1046.52$.
- 4. $\overline{x} 1.5\sigma(x) = 93.1 1.5 * 32.35 = 44.58$ et $\overline{x} + 1.5\sigma(x) = 93.1 + 1.5 * 32.35 = 141.63$. On doit donc ajouter les effectifs des classes de 50 à 130, puis estimer les effectifs des intervalles [44.58; 50] et [130; 141.63], ce qui se fait

2

en utilisant leurs densités :

Intervalle	Amplitude	Densité	Effectif
[44.58; 50[5.42	0.2	5.42 * 0.2 = 1.08
[130; 141.63]	11.63	1.1	11.63 * 1.1 = 12.79

, ce qui donne un total de :

(40+46+48+28)+1.08+12.79=175.87, soit une proportion de : $\frac{175.87}{200}=0.8794$, soit 87.94%.

5. On doit calculer les quartiles et calculer $C_Y=\frac{Q_1+Q_3-2Q_2}{Q_3-Q_1}$; A l'aide des fréquences cumulées croissantes, on trouve: $Q_1=70, Q_2=91.67$ et $Q_3=114.29, \mathrm{soit}$: $C_Y=\frac{Q_1+Q_3-2Q_2}{Q_3-Q_1}=\frac{70+114.29-2*91.67}{114.29-70}=2.$ 14×10^{-2} ; ce qui donne un coefficient légèrement positif et une série légèrement étalée à droite.

2 EXERCICE-2

1. On trouve : $\overline{X} = 582.8$ et $\overline{Y} = 365.5$.

	Χ	Υ
Moyenne	582.8	365.5
Ecart-type	26.06	34.40
Variance	678.96	1183.05

X _i	y i	x _i yi		
525	325	170625		
554	362	200548		
575	315	181125		
579	355	205545		
585	325	190125		
586	370	216820		
590	390	230100		
608	420	255360		
610	410	250100		
616	383	235928		
5828	3655	2136276		

- 4. On trouve : $\hat{y} = \hat{a}x + \hat{b} = 0.9046x 161.71$
- 5. $\widehat{a} \simeq 0.9046$, représente en roupies, la variation(augmentation) de la dépense alimentaire quand la dépense totale augmente de 1 roupie.
- 6. $r = \frac{Cov\left(x;y\right)}{\sigma\left(x\right)\sigma\left(y\right)} = 0.685\,3$, le coefficient de corrélation linéaire mesure l'intensité de la liaison linéaire existant entre x et y; ce coefficient varie entre -1et 1; ici il est relativement proche de 1et traduit une assez bonne liaison linéaire entre x et y. et $R^2 = r^2 = \frac{\text{Variance expliquée}}{\text{Variance totale}} = \frac{V(\widehat{y})}{V(y)} = \frac{\mathbf{SCE}}{\mathbf{SCT}} \simeq 0.4696$; ce coefficient donne la part de la variation totale expliquée par le modèle, ici 46.96%.
- 7. $\hat{y}(650) = 0.9046 * 650 161.71 \simeq 426.28$ roupies

3 EXERCICE-3

	Sportive	Sûre	n _{i+}	f _{i+}
BMW	256	74	330	0,6433
MERCEDES	41	42	83	0,1618
LEXUS	66	34	100	0,1949
n _{j+}	363	150	513	
f _{j+}	0,7076	0,2924		1

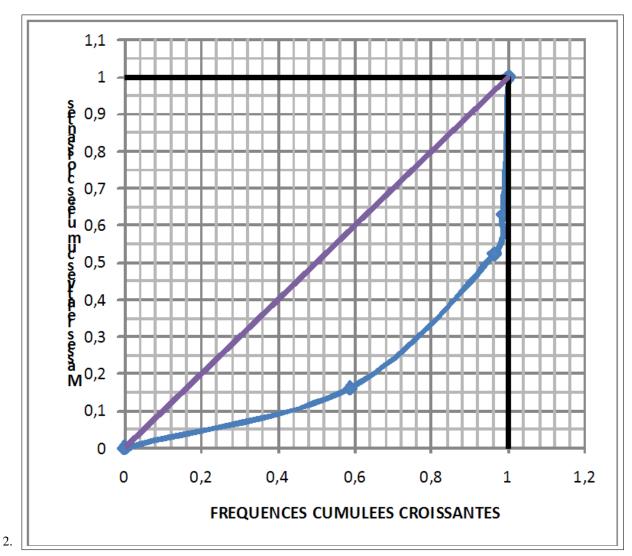
Les fréquences marginales sont en gras dans le tableau ci-dessus.

- 2. Cette fréquence partielle est donnée par : $f_{11}=\frac{256}{513}=0.499\,0$. Il y a $49.90\,\%$ de voitures qui sont de marque BMW et perçues comme sportives
- 3. Il s'agit d'une fréquence conditionnelle : $f_{(j=2/i=3)}=f_{y=Sure/x=Lexus}=\frac{34}{100}=0.34$. Il y a 34% de véhicules perçus comme sûrs parmi les Lexus.

4 EXERCICE-4

a _i	b i	n _i	Xi	fi	f _{icc}	n _i xi	qi	q _i cc	Si
0	2	222279	1	0,5870	0,5870	222279	0,1614	0,1614	0,0474
2	5	142380	3,5	0,3760	0,9630	498330	0,3617	0,5231	0,1287
5	30	8331	17,5	0,0220	0,9850	145792,5	0,1058	0,6289	0,0127
30	150	5680	90	0,0150	1,0000	511200	0,3711	1,0000	0,0122
		378670				1377601,5	1		0,2009

- 1. La médiane se localise à l'aide des fréquences cumulées croissantes dans la classe [0;2[, puis on effectue une interpolation linéaire :
 - $A\left(0:0
 ight),\,B\left(2;0.5870
 ight)$ et $M\left(Me;0.50
 ight)$, ce qui donne : $\frac{0.587}{2}=\frac{0.5}{Me}$, soit $Me=\frac{1}{0.587}\simeq1.70$. 50% des entreprises de ce secteur ont un chiffre d'affaire inférieur ou égal à 1.70 millions d'euros.



3. On doit calculer l'aire de concentration : $A_c=0.5-\sum S_i=0.50-0.2009=0.299\,1$ et l'indice de Gini est défini par : $I_G=\frac{A_c}{Aire(OAB)}=\frac{0.2991}{0.5}=0.598\,2$; l'indice de Gini est toujours compris entre 0 et 1 ; quand il est proche de 1, la concentration est forte ; ici la concentration est assez forte.