Contrôle continu 1A

Corrigé.

EXERCICE-1 (7 pts)

X _i	n _i	n _i CC		
102	104	104		
103	89	193		
104	75	268		
105	59	327		
106	29	356		
107	19	375		
108	7	382		
109	3	385		
110	1	386		
n =				

- 1. Il s'agit d'un caractère quantitatif discret, l'âge des pensionnaires d'un centre gériatrique.
- On calcule l'effectif total qui est : n = 386. Ce nombre est pair, il n'y a pas à proprement parler de médiane, mais un intervalle médian, constitué par les deux observations centrales : les observations de rang 193 et 194, c'est-à dire, 103 et 104 ; par convention on prend comme médiane la moyenne arithmétique de cette série : $M_e = \frac{103 + 104}{2} = 103.5$
- 3. On a déjà : $Q_2=M_e=103.5$; pour déterminer Q_1 , on calcule $\frac{n}{4}=\frac{386}{4}=96.5$; Q_1 est la plus petite valeur de la série telle qu'il y ait au moins 25% des valeurs de la série inférieures ou égales à Q_1 , donc la 97 ème observation : $Q_1=102$.

Pour Q_3 on calcule $\frac{3n}{4} = \frac{3*386}{4} = 289.5$; on doit avoir au moins 75% des plus petites valeurs de la série inférieures ou égales à Q_3 , Q_3 est donc la 290 ème observation, soit 105.

II EXERCICE-2 (13 pts)

1. Il sagit du montant des indemnisations de 400 sinistres. C'est un caractère quantitatif continu.

2. La moyenne est donnée par :
$$\overline{x} = \frac{\sum n_i x_i}{\sum n_i} = \sum f_i x_i$$
 et on trouve : $\overline{x} = 9722$

3. Les amplitudes de classes sont différentes, on doit donc déterminer les densités (d'effectifs ou de fréquences) ; la classe modale est la

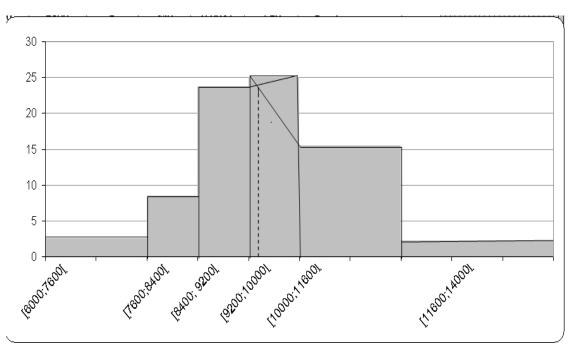
classe de plus forte densité, c'est la classe :
$$[9200 ; 10000[$$
 . On a calculé dans le tableau ci-dessous les fréquences corrigées, $f_i cor$, obtenues en multipliant la densité par l'amplitude minimale de classe, 800 . On va déterminer, à l'intérieur de la classe modale, le mode défini par : $M_o = \frac{h_2 x_1 + h_1 x_2}{h_2 + h_1}$, avec
$$\begin{cases} x_1 = 9200 \text{ et } x_2 = 10000 \\ h_1 = 25 - 23.75 = 1.25 \\ h_2 = 25 - 15.5 = 9.5 \end{cases}$$
 soit : $M_o = \frac{9.5 * 9200 + 1.25 * 10000}{9.5 + 1.25} \simeq \boxed{9293.02}$

а	b	amplitude	Xi	f _i	x _i f _i	d _i	f _i cor	f _{iCC}
6000	7600	1600	6800	5	340	0,0031	2,50	5
7600	8400	800	8000	8,5	680	0,0106	8,50	13,5
8400	9200	800	8800	23,75	2090	0,0297	23,75	37,25
9200	10000	800	9600	25	2400	0,0313	25,00	62,25
10000	11600	1600	10800	31	3348	0,0194	15,50	93,25
11600	14000	2400	12800	6,75	864	0,0028	2,25	100
					9722			

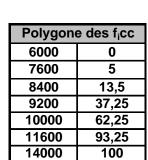
4. On utilise les fréquences corrigées comme hauteur des rectangles.

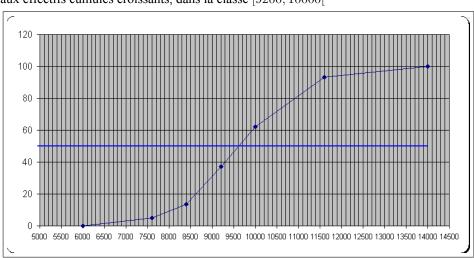
AES page 1

Contrôle continu 1A



5. La médiane est localisée grâce aux effectifs cumulés croissants, dans la classe [9200; 10000]





On effectue alors une interpolation linéaire. : $\frac{62.25 - 37.25}{10000 - 9200} = \frac{50 - 37.25}{Me - 9200}$ soit $Me - 9200 = \frac{12.75}{0.031\,25}$ soit $Me = \frac{12.75}{0.031\,25} + 9200 \simeq \boxed{9608}$

2 AES